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Abstract
A recently developed theory for boundary-induced phenomena in nonequilib-
rium systems predicts the existence of various steady-state phase transitions
induced by the motion of a shock wave. We provide direct empirical evidence
that a phase transition between a free flow and a congested phase occurring in
traffic flow on highways in the vicinity of on- and off-ramps can be interpreted
as an example of such a boundary-induced phase transition of first order. We
analyse the empirical traffic data and give a theoretical interpretation of the
transition in terms of the macroscopic current. Additionally we support the
theory with computer simulations of the Nagel–Schreckenberg model of vehic-
ular traffic on a road segment which also exhibits the expected second-order
transition. Our results suggest ways to predict and to some extent to optimize
the capacity of a general traffic network.

PACS numbers: 0250G, 0570L

One-dimensional physical systems with short-ranged interactions in thermal equilibrium do
not exhibit phase transitions. However, this is no longer true if the action of external forces
sets up a steady mass transport and drives the system out of equilibrium. Then boundary
conditions, usually insignificant for an equilibrium system, can induce nonequilibrium phase
transitions in the stationary states of both deterministic and noisy driven complex systems,
including biological and sociological mechanisms involving many interacting agents. Despite
the importance of this phenomenon and a number of theoretical studies [1–4], it has never been
observed directly. So far, only indirect experimental evidence for a boundary-induced phase
transition exists in older studies of the stochastic kinetics of biopolymerization on nucleic acid
templates [5, 6].

In the present work we report the first direct observation of a boundary-induced steady-
state phase transition of first order which occurs in traffic flow. Statistical analysis of traffic
data sets taken on a motorway near Cologne reveals transitions from stationary free-flow
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traffic to stationary congested traffic, characterized by a discontinuous reduction of the average
speed [7] and caused by a boundary effect, viz. the presence of an on-ramp. We show that
these data find unambiguous interpretation in the framework of nonequilibrium phase transition
theory for stationary states as applied to a road segment between the on- and off-ramps. The
theory predicts also a second-order phase transition, the existence of which we demonstrate by
Monte Carlo simulation. To avoid confusion we stress that we study self-organized stationary
behaviour (observed in averaging over sufficiently long time intervals, see below) as a function
of external control parameters (the activity on the on-ramp and the inflow into the road segment)
rather than effects triggered by a moving perturbation [8, 9].

Vehicular traffic on a motorway is controlled by a mixture of bulk and boundary effects
caused by on- and off-ramps, varying number of lanes, speed limits, weather conditions, etc.
The fundamental characteristic of the bulk motion is the stationary flow–density diagram,
i.e. the fundamental diagram, which incorporates the collective effects of individual drivers
behaviour such as trying to maintain an optimal high speed while taking safety precautions.
The qualitative shape of the flow–density diagram j (ρ) is largely independent of the precise
details of the road and hence amenable to numerical analysis using either stochastic lattice gas
models or partial differential equations [10,11]. A decisive conceptual feature of our theoretical
picture is its derivation from the stochastic microdynamics in the lattice gas framework [4,12]
from which we conclude that only the qualitative features of the flow–density diagram, but
not the microscopic details of traffic flow, determine the stationary phase diagram. This basic
strategy and its ramifications (in particular, the incorporation of fluctuations due to noise and the
stochastic treatment of on/off-ramps) is in contrast to the coarse-grained, gas-kinetic approach
of [8] which entails a deterministic and more phenomenological description of traffic flow
phenomena.

We illustrate our theoretical approach by using a now well established lattice gas model
for traffic flow, the cellular automaton model of Nagel and Schreckenberg [13] (NaSch model).
The flow–density relation for the NaSch model, figure 1, is in agreement with measurements
of the flow j taken with the help of detectors on the motorway A1 near Cologne which show a
maximum of about 2000 vehicles h−1 at a density of about ρ∗ = 20 vehicles km−1 lane−1 [7].
At densities below ρ∗ one observes free flow, while for larger densities one observes congested
traffic.

In addition to the density dependence of the flow, two important characteristics are derived
directly from the fundamental diagram: the shock velocity of a ‘domain wall’ between two
stationary regions of densities ρ−, ρ+,

vshock = j (ρ+) − j (ρ−)

ρ+ − ρ− , (1)

obtained from mass conservation, and the collective velocity,

vc = ∂j (ρ)

∂ρ
(2)

which is the mean velocity of the centre of mass of a local perturbation spreading slowly out
in a homogeneous, stationary background of density ρ. Both velocities are readily observed
in real traffic. The collective velocity vc describes the upstream movement of a local, compact
jam. In the density range 25–130 cars km−1, vc ranges from approximately −10 km h−1 to
−20 km h−1 (figure 1) which has to be compared with the empirically observed value v ≈ −15
km h−1 [13, 14]. The shock velocity is the mean velocity of the (fluctuating) position of the
upstream front of an extended, stable traffic jam. The formation of a stable shock is usually a
boundary-driven process, caused by a ‘bottleneck’ on a road. Bottlenecks on a highway may
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Figure 1. Fundamental diagram (flow–density relation) as modelled by the NaSch model with
vmax = 4, randomization parameter p = 0.25, time step = 1.0 s, lattice spacing = 7.5 m. The
system has 3200 sites, and the flux is averaged over 106 lattice updates. The broken and full lines
indicate the slope which defines the collective velocity of spontaneous local traffic jams and the
shock velocity, respectively.
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Figure 2. Schematic road design of a highway with an on-ramp where cars enter the road. The
arrows indicate the direction of the flow. The detector measures the local bulk density ρ̂ and bulk
flow ̂ .

arise from a reduction in the number of lanes or from on-ramps where additional cars enter a
road [15, 16].

The experimental data considered here (see figure 2 for the relevant part of the highway)
show boundary effects caused by the presence of an on-ramp. Far upstream from the on-
ramp, free flow of vehicles with density ρ− and flow j− ≡ j (ρ−) is maintained. Just before
the on-ramp, the vehicle density is ρ+ with corresponding flow j+ ≡ j (ρ+). Note that no
experimental data are available for ρ−, j− and ρ+, j+ as well as the activity of the ramp. The
only data come from a detector located upstream from the on-ramp5 which measures a traffic
density ρ̂ and the corresponding flow ̂ .

Next the effects of the on-ramp are considered. Cars entering the motorway cause the
mainstream of vehicles to slow down locally. Therefore, the vehicle density just before the

5 The distance between the detector and the on-ramp should be large enough, so that the on-ramp fluctuations are not
measured directly. In our case, the detector is located approximately 1 km upstream from on-ramp.
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Figure 3. Time series of the velocity. Each data point represents an one-minute average of the
speed. Shown are empirical data (from [7]) in comparison with the results of computer simulations
of a simplified model (see text).

on-ramp increases to ρ+ > ρ−. Then a shock, formed at the on-ramp, will propagate with
mean velocity vshock (see (1)). Depending on the sign of vshock, two scenarios are possible:

(1) vshock > 0 (i.e. j+ > j−). In this case the shock propagates (on average) downstream
towards the on-ramp. Only by fluctuations is a brief upstream motion possible. Therefore the
detector will measure a traffic density ρ̂ = ρ− and flow ̂ = j−.

(2) vshock < 0 (i.e. j+ < j−). The shock wave starts propagating with the mean velocity vshock

upstream, thus expanding the congested traffic region with density ρ+. The detector will now
measure ρ̂ = ρ+ and flow ̂ = j+.

Let us now discuss the transition between these two scenarios. Suppose one starts with a
situation where j+ > j− is realized. If now the far-upstream density ρ− increases it will reach
a critical point ρcrit < ρ∗ above which j− > j+; i.e. the free flow upstream j− prevails over
the flow j+ which the ‘bottleneck’ (the on-ramp) is able to support. At this point the shock
wave velocity vshock will change sign (see (1)) and the shock starts travelling upstream. As a
result, the stationary bulk density ρ̂ measured by the detector upstream from the on-ramp will
change discontinuously from the critical value ρcrit to ρ+. This marks a nonequilibrium phase
transition of first order with respect to the order parameter ρ̂. The discontinuous change of ρ̂

leads also to an abrupt reduction of the local velocity. Notice that the flow ̂ = j+ through the
on-ramp (then also measured by the detector) will stay independent of the free flow upstream
from the congested region j− as long as the condition j− > j+ holds.

Empirically this phenomenon can be seen in the traffic data taken from measurements at
the detector D1 on the motorway A1 close to Cologne [7]. Figure 3 shows a typical time series
of the one-minute velocity averages. One can clearly see the sharp drop in the velocity at about
8 am.

Also the measurements of the flow versus local density, i.e. the fundamental diagram
(figure 4), support our interpretation. Two branches can be distinguished. The increasing part
corresponds to an almost linear rise of the flow with density in the free-flow regime [14]. In
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Figure 4. Measurements of the flow versus local density before an on-ramp on the motorway A1
close to Cologne (data from [7]). The detector is located at a distance 1 km upstream from the
on-ramp. The data were collected over a period of 12 days.

accordance with our considerations, this part of the flow diagram is not affected by the presence
of the on-ramp at all and one measures ̂ = j− which is the actual upstream flow. The second
branch are measurements taken during congested traffic hours, the transition period being
omitted for better statistics. The transition from free flow to congested traffic is characterized
by a discontinuous reduction of the local velocity. However, as predicted above, the flow
does not change significantly in the congested regime. In contrast, in local measurements
large density fluctuations can be observed. Therefore in this regime the density does not take
the constant value ρ+ as suggested by the argument given above, but varies from 20 to 80
vehicles km−1 lane−1 (see figure 4).

One should stress here that congested traffic data are usually not easy to interpret, because
the traffic conditions (mean inflow and outflow of cars on the on- and off-ramps, and so the
bulk mean flow) are changing in time. According to our arguments, in a congested regime the
detector measures j+, solely due to the on-ramp activity. Therefore, j+(t) = j (ρ+(t)) < j−(t)

must be satisfied. During times of very dense traffic one expects there are always cars ready to
enter the motorway at the on-ramp, thus guaranteeing a sufficient and approximately constant
on-ramp activity. The measured flow is constant over long periods of time which is in agreement
with the notion that the transition is due to a stable traffic jam. Spontaneously emerging and
decaying jams would lead to the observation of a non-constant flow.

The use of our approach is not limited to a qualitative explanation of the data. Beyond that
it can also be used to calculate the phase diagrams of systems with open boundary conditions
for a large class of traffic models. We modelled a section of a road, with on-ramp on the left and
with either an off-ramp or an on-ramp on the right, using the NaSch cellular automaton [13].
We modify the basic model by using open boundary conditions with injection of cars at the
left boundary (corresponding to in-flow into the road segment) and removal of cars at the right
boundary (corresponding to out-flow). Therefore it can also be regarded as a generalization of
the asymmetric simple exclusion process (see e.g. [17]) to particles with higher velocity.

During the simulations local measurements of the velocity have been performed analogous
to the experimental setup. For comparison the results of the computer simulations have been
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Figure 5. Phase diagram of the NaSch model with open boundaries for p = 0.25, vmax = 4.
Cars enter the road from a reservoir of density ρ−, inducing the upstream density ρ− discussed
in the text. At the right boundary cars leave the road into a reservoir of density ρ+, leading to the
on-ramp density ρ+. The solid (dashed) curve denotes the theoretical prediction for the first-order
(second-order) transitions lines obtained from the numerically determined flow–density relation.
The points represent phase transition points for the simulated system of size 3200. The phases are:
free flow (FF), congested traffic (CT), maximal flow (MF) phase.

included in figure 3. Note that even the quantitive agreement with the empirical data is very
good. This has been achieved by using a finer discretization of the model, i.e. the length of
the cell is considered as l = 2.5 m. The results were obtained for L = 960, p = 0.25 and
vmax = 13. We kept the input probability α = 0.65 constant. Then the free-flow part is
obtained using β = 1 and the congested part using β = 0.55. The transition was observed at
10 min after we reduced the output probability. The ‘detector’ was located at the link from
site 480 to 481.

Figure 5 shows the full phase diagram of the NaSch model with open boundary conditions.
It describes the stationary bulk density ρ̂ as a function of the far-upstream in-flow boundary
density ρ− and the effective right boundary density ρ+. The case of an on-ramp (or shrinking
road width, etc) at the right boundary corresponds to the situation discussed above. Here, the
density is increased locally to ρ+ > ρ−. In agreement with the empirical observation, we
find a line of first-order transitions from a free-flow (FF) phase with bulk density ρ̂ = ρ− to a
congested traffic (CT) phase with ρ̂ = ρ+. On this line vshock changes sign.

The case of an off-ramp (or expansion of road space, etc) leads to a local decrease ρ+ < ρ−

of the density. Here the collective velocity vc (2) plays a prominent role. As long as vc is
positive (i.e. in the free-flow regime ρ− < ρ∗, see figure 1), perturbations caused by a small
increase of the upstream boundary density ρ− gradually spread into the bulk, rendering ρ̂ = ρ−

(FF regime). At ρ− = ρ∗, vc changes sign6 and an overfeeding effect occurs: a perturbation
from the upstream boundary does not spread into the bulk [2,4] and therefore further increase
of the upstream boundary density does not increase the bulk density. The system enters the
maximal flow (MF) phase with constant bulk density ρ̂ = ρ∗ and flow j (ρ∗) = jmax. The
transition to the MF phase is of second order, because ρ̂ changes continuously across the phase
transition point.

6 In this case the upstream entrance to the road itself acts as a ‘dynamical’ bottleneck with maximal capacity jmax.
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The existence of a maximal flow phase has not been emphasized in the context of traffic
flow up to now. At the same time, it is the most desirable phase, carrying the maximal possible
throughput of vehicles jmax. For practical purposes our observations may directly be used in
order to operate a highway in the optimal regime. The maximal throughput can be observed if
both density reservoirs have a higher capacity than the considered stretch of the highway, e.g.
a two-lane section between two three-lane sections. In this example the maximal capacity can
be achieved by optimizing the lane changes upstream of the lane reduction.

We stress that the stationary phase diagram of figure 5 is generic in the sense that it is
determined solely by the macroscopic flow–density relation. The number of lanes of the road,
the distribution of individual optimal velocities, speed limits and other details enter only in so
far as they determine the exact values characterizing the flow–density relation for that particular
road. We also note that throughout the paper we have assumed the external conditions to vary
slowly, so that the system has enough time to readjust to its new stationary state. Experimenting
with different cellular traffic models in a real time scale shows that the typical time to reach
a stationary state in a road segment of about 1.2 km is of the order of 3–5 min, which is
reasonably small.

In conclusion, we have shown that traffic data collected on German motorways provide
evidence for a boundary-induced nonequilibrium phase transition of first order from the free
flowing to the congested phase. The features of this phenomenon are readily understood in
terms of the flow–density diagram. The dynamical mechanism leading to this transition is an
interplay of shocks and local fluctuations caused by an on-ramp. Full investigation of a cellular
automaton model for traffic flow reproduces this phase transition, but also exhibits a richer
phase diagram with an interesting maximal flow phase. These results are not only important
from the point of view of nonequilibrium physics, but also suggest new mechanisms of traffic
control.

We stress that our considerations apply to arbitrary models of traffic flow with a single-
valued current–density relation j (ρ), see e.g. [12]. There are experimental indications,
however, that within some characteristic range of densities [ρ1, ρ2], where ρ1 < ρmax < ρ2,
j (ρ1) > j (ρ2), two long-lived traffic states with a different flux can be reached, depending on
initial conditions. Therefore the flux j within this range will show hysteresis. Our arguments
for the first-order phase transition are still valid for the branch where j (ρ+) at the phase
transition is analytic, i.e. ρ+ > ρ2. On the contrary, on the branch where ρ− > ρ−

crit ,
then j (ρ−

crit) = j (ρ2), and the exact phase transition line will disperse and, further, high-
velocity fluctuations due to the hysteresis will be observed. Both regimes were observed
experimentally on Korean highways ( [18], phases CT5 and CT4). Our empirical traffic data
evidently correspond to the branch without (or with small) hysteresis, because the universal
outflow is seen (figure 4).

Finally, we remark that the scope of the domain-wall theory goes far beyond the correct
prediction of the stationary phase diagram. Recent work on the asymmetric simple exclusion
process has shown that even the dynamics of the shock position [19], and therefore also
fluctuation quantities, are matched by the domain-wall theory [20] and are applicable to very
small systems. Also the results for the interplay between different stationary states obtained
by the domain-wall theory are in excellent agreement with simulation results [20]. This shows
that the domain-wall theory offers a quite complete description of the observables which
play a major role in analysing traffic networks. Another advantage of the theory is that it
can be applied to a large class of traffic models because the only prerequisite is a single-
valued fundamental diagram (see [12] for a more sophisticated example). However, also in
the presence of hysteresis, similar types of arguments may be applied in order to establish the
phase diagram of open systems [21].
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